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In most cases, during the unsteady state, more of the heat arriving

at the surface of the liquid droplet goes to sensible heat than goes to

Is tent heat of vamorization. This is es_ecially true for low-volatility
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mass transfer decreases with time_ although the droplet is being heated

up. The time required by a certain size droplet to reach its wet-bulb

temperature is less for higher volatility fuels at the same ambient and
initial conditions.

It should be realized that the calcul_ted curves depend upon the

use of heat and mass transfer correlations that are extended far beyond

the conditions under which they were obtained. Thus_ extensive use of

the values shown on the calculated curves should not be made until either

the curves or the extrapolations of the heat and mass transfer correla-

tions have been checked experimentally.

In addition to the theoretical work, in order to verify the results

of the calculations, which showed the unsteady state to be of importance,

apparatus was set up to obtain experimental temperature-time histories

of comparatively large _roplets vaporizing in air strem_ at constant

velocities and atmospheric pressure. This apparatus is described and a

few experimental c,mves are included. These curves show the relative

distribution of the time interval between the m_steady and steady states

when different air temperatures and different fuels are used.

INTRODUCTION

Knowledge of the phases through which a heterogeneous mixture of

air and fuel passes before ignition ts_es place is essential for the

rational design of jet-engine combustion chambers. For discussion pur-

poses, the time elapsed before ignition is often divided into physical

and chemical components, altho1_h the relative magnitudes of these two

components are not known. Since the physical component inevitably pre-

cedes and perhaps in part overlaps the chemical component, knowledge of

the magnitude of and the factors affecting the ,kysical component is of

obvious importance in any study of the time int<rv_l before ignition.

Fuel injected through a nozzle into a combustion chamber is believed

to pass through the following stages: The fuel leaves the nozzle orifices

as a ligament or sheet. This ligament or sheet then breaks down into dif-

ferent size droplets. Appreciable heat transfer from the air present in

the combustion chamber to the fuel occurs only after the ligament has

broken up into droplets. This is due to the appreciable increase of sur-

face area of the fuel that is exposed to the air. As heat transfer takes

place, the droplets heat up (or possibly cool do_: depending upon ambient

air conditions and initial fu_l tempe'aZure) and a the s_me time lose
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relative to the air by aerodynamic drag forces. After a certain time
has elapsed, each droplet attains an asymptotic or equilibrium tempera-
ture equal to the wet-bulb temperature corresponding to the conditions
present at that moment.

The larger droplets are slower in attaining equilibrium conditions_
but, although they have essentially the sameinitial speed as the smaller
droplets, they are slowed downrelative to the air at a lesser rate, and
they movealong with the air ahead of the smaller ones that were injected
at the sameinstant. The smaller drops, however, give away their mass
and completely vaporize faster and travel a shorter distance through the
combustion chamberthan the larger droplets.

A cloud of vapor due to the smaller droplets is thus rapidly formed
and movesalong with the air. The mass of vapor given awayby the
incoming larger droplets is added to this vapor cloud. Somewherein the
combustion chambera combustible mixture of air and fuel vapor is formed
and is ready for ignition at that point. In the absence of outside
ignition, this mixture must be heated by the air until it reaches its self-
ignition temperature if combustion is to take place. By definition, the
physical portion of the ignition delay extends until a combustible mixture
is formed and heated to the ignition temperature. Since somechemical
reaction maytake place at temperatures lower than the ignition tempera-
ture, the chemical portion of the ignition delay period probably overlaps
the physical portion. The vaporization process is thus an essential part
of the ignition delay period.

Although the fuel droplets reach their equilibrium or wet-bulb tem-
peratures asymptotically with time, the vaporization process can roughly
be separated into the unsteady state and the steady or equilibrium state.
Numerousinvestigations have been conducted covering the latter stage
(refs. I and 2), but only a few attempts have been madeto study the
unsteady state (ref. 3). It was the intent of this investigation to
determine theoretically temperature-time histories of droplets of dif-
ferent size and fuel composition under different ambient air conditions
in an attempt to determine whether the unsteady-state period is of
importance in the history of the fuel droplets previous to ignition.

This report, then, presents a detailed study of the unsteady-state
portion of the total vaporization time of single fuel droplets injected
into air. Calculations were performed for numerouscombinations of the
following conditions:

Fuels .................. n-octane, benzene, n-pentane
Initial radii, _ ................... i0, 50, i00
Initial droplet temperatures, OF ............... 50, 200
Initial droplet velocities, fps ................ I00, 400
Air pressures, atm ..................... 0.5, I, 5
Air temperatures, OF .............. i00, 500, 1,000
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The three fuels have standard atmospheric boiling temperatures of 96.9° ,
176.2°, and 258.2° F, respectively. The calculations covered all com-
binations of the above conditions except when the initial droplet tem-
peratures were higher than the boiling points of the fuels at the corre-
sponding air pressures.

The properties of the three fuels under investigation and for air
were obtained from various references as shownin table I.

This work was conducted at the University of Wisconsin under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

SYMBOLS

A C

A o

Bo

CD

CP a

Cpf

c_

Cpm

Dv

d

F

ga

gf

h

cross-sectional area of liquid droplet, sq in.

surface area of liquid droplet, sq in.

thickness of air-vapor film surrounding droplet, in.

coefficient of drag for spheres, unitless

specific heat of air at constant pressure, Btu/(lb)(°F)

specific heat of fuel vapor at constant pressure,
Btu/(ib)(°F)

specific heat of liquid fuel, Btu/(ib)(°F)

average specific heat of alr-vapor mixture in film at

constant pressure, Btu/(lb)(°F)

diffusion coefficient of air-vapor system, sq in./sec

penetration or distance traveled relative to air, in.

drag force, lb

weight fraction of air in film, unitless

weight fraction of fuel vapor in film, unitless

coefficient of heat transfer in film in absence of mass

transfer, based on surface area of liquid droplet Ao,

Btu/(sq in. ) (see) (°F)
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%

K I, K2, K3,

ka

kf

kg

kL

M

H a

Hf

m

NNu

NNu '

Npr

NRe

NSc

PT

Pa

PaB

coefficient of heat transfer to liquid, Btu/(sq in.)(sec)(°F)

constants

thermal conductivity of air, Btu/(in.)(sec)(°F)

thermal conductivity of fuel vapor, Btu/(in.)(sec)(°F)

coefficient of z_ss transfer in film, I/sec

thermal conductivity of liquid fuel, Btu/(in.)(sec)(°F)

average thermal conductivity of air-vapor mixture in film,

Btu/(in.)(sec)(°F)

ratio of instantaneous mass to original mass of droplet,

percent

molecular weight of air, ib/mole

molecular weight of fuel vapor, ib/mole

apparent molecular weight of air-vapor mixture, ib/mole

mass of liquid droplet, ib

Nusselt number for heat transfer, unitless

Nusselt number for mass transfer, unitless

Prandtl number, Cpm_m/km, unitless

Reynolds n_uber, 2roUOm/[_m, urlitiess

Schmidt number _m/OmDv , unitless

total pressure, ib/sq in. abs

PfL

average partial pressure of air in film, PT - -_--_

ib/sq in. abs

partial pressure of air at outer edge of film,

ib/sq in. abs
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PaL

Pf

PfB

PfL

Q

%

Qs

Q_

R

r

ra

rf

r o

T

T
as

T B

TL

Tm

partial pressure of air at liquid droplet surface,
ib/sq in. abs

average partial pressure of fuel vapor in film,
ib/sq in. abs

partial pressure of fuel vapor at outer edge of film,

considered to be zero, ib/sq in. abs

partial pressure of fuel vapor at liquid droplet surface,

equal to vapor pressure of fuel at droplet tempera-

ture TL, ib/sq in. abs

total heat transfer from air to droplet, Btu/sec

sensible heat received by droplet, Btu/sec

heat carried away from droplet by diffusing vapor in form

of superheat, Btu/sec

heat received at droplet surface, Btu/sec

heat of vaporization, Btu/sec

universal gas constant, in-lb/(mole)(°F)

radius at any point in film, in.

molal rate of diffusion of air in equimolal diffusion,
moles/(sec)(sq in.)

molal rate of diffusion of fuel vapor in equimolal

diffusion, based on surface area of liquid droplet Ao,

moles/(sec)(sq in. )

radius of liquid droplet_ in.

temperature in film at radius r, OR

asymptotic or wet-bulb temperature of droplet, oR

temperature of air outside film, oR

temperature of liquid droplet, oR

logarithmic mean temperature in film, oR
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U

W

x

Y

z

8

_a

_f

_m

0a

Pm

droplet velocity relative to air, in./sec

mass of fuel vapor diffused out, ib/sec

proportionality factor

fraction of film thickness at radius r,
r - ro

, unitless
Bo

factor, wCpf/hAo, unitless

correction factor of mass transfer due to semipermeability

of film, unitless

time, sec

latent heat of vaporization of fuel, Btu/ib

viscosity of air, ib/(in.)(sec)

viscosity of fuel vapor, ib/(in.)(sec)

average viscosity of air-vapor mixture in film, Ib/(in.)(sec)

density of air, Ib/cu in.

density of liquid droplet, ib/cu in.

average density of air-vapor mixtLme in film, ib/cu in.

ANALYSIS

In the following theoretical study of the vaporization of single

droplets, two assumptio_: were made. The first assumption was that an

endless supply of air s<_'rounded the droplet at all times. This means

that there is no interaction between different droplets in the same air

stream, or that only a sii_le droplet was consieored present. The

partial pressure d_le to lhe f,_el vapor at the _ _r edge of the air-

vapo_ =L_ro_ _[_ l_h_ [r_ _ was thus considered to be zero at all

•h_ _{e(;om_ '_sslsNr_r_<,nwas that the air i :essure and temy)eraturetimes. ::_

re_ined _nc_:_.m_'_ _]:_1 _ _':_ the vaporization process. It _ _:_1own
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that during injection in a continuous-flow air stream the air temperature
decreases because of heat transfer and that in the absence of friction
its pressure should increase because of the slowing down of the stream;
the second assumption is consistent, however, with the assumption of a
single droplet in a large volume of air.

Figure i shows a spherically symmetrical droplet surrounded by a
film containing an air - fuel-vapor mixture. At any one instant, the
mixture strength varies from a maximumat the droplet surface to a mini-
mumat the outer edge of the film. The shape of the temperature gradient
curve depends on the relative temperatures of the fuel droplet and air
and the mass of vapor being diffused out at that instant. Under the
ambient conditions considered in this study_ eliminating the case where
the droplet was introduced with a vapor pressmre higher than the total
pressure, the vaporization process can take place in three different
cases:

(I) Whenthe initial temperature of the droplet is lower than the
air temperature and lower than its ownwet-bulb temperature, in which
case the droplet heats up continuously during the unsteady-state portion
of the vaporization time. This case comprises the larger part of the
calculated conditions contained in this report.

(2) Whenthe initial temperature of the droplet is lower than the
air temperature but higher than its ownwet-bulb temperature at the
ambient air conditions. In this case the droplet cools down continu-
ously while vaporizing and the sensible heat lost by the liquid supplies
part of the heat of vaporization of the diffusing vapor. Heat is always
transferred from the air to the droplet, however.

(3) Whenthe initial temperature of the droplet is higher than both
the air temperature and its own wet-bulb temperature. In this case the
droplet cools down continuously until it reaches its wet-bulb temperature
which is lower than the air temperature. Durir_ that time whenthe droplet
temperature is higher than the air temperature, there is a net heat trans-
fer from the droplet to the air and thus heat and mass transfer take place
in the samedirection. Whenthe droplet temperature has dropped below
the air temperature, the process is the sameas that in case (2).

It is convenient to divide the analysis into three parts - the heat
transfer, the mass transfer_ and the velocity change.

Heat Transfer

Referring to figure i, and assuming that the droplet is vaporizing
under the conditions of case (i), the total or net heat transfer Q from
the air to the film surrounding the droplet, prior to ignition, goes three
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ways:
liquid_
vapor in the form of superheat_
let surface is denoted by qv

(i) To heat up the liquid droplet, QL; (2) to vaporize the

Q_; and (3) to be carried or peeled back with the diffusing
Qs" The heat that arrives at the drop-

and equals the sumof QL and Qh"

It should be noted that in developing the relationship used
not include radiant heat transfer.

If at any instant during vaporization a point in the air-vapor film
at a radius r from the center of the droplet and at temperature T is
considered:

Q does

%=%+%

=Q- Qs
(i)

%-- w%fl _
dy

(2)

where w is the rate at which the vapor is diffusing out, y is the

fraction of the film thickness at radius ro, h is the coefficient of

heat transfer through the film in the absence of mass transfer, Cpf is

the specific heat of the fuel vapor, T is the temperature of the mix-

ture at the position y, and TL is the temperature of the surface of

the droplet.

Rearranging equation (2) gives:

dy=
hA o

% _ WCpfT L + WCpfT

dT

Integrating across the film between y = 0 to y = 1.0 where T = TL

to T = TB and considering the specific heat of the fuel vapor Cpf

to be constant throughout the film:

hA o

i = _ log e

w%f

% + WCpf(T B - TL)

%
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or by rearranging and expressing as an exponential:

eWCpf/hA° =

Defining z as wCpf/hA o gives:

Qv + wCpf(TB - TL)

%

QV

ez - 1

Z

Qv : hAo(T B - TL)ez _ 1 (3)

ez - 1 (4)

Thus the factor z I(e z - i) represents that fraction of the total

heat transfer Q from the air that finally arrives at the surface of

the liquid droplet and supplies the latent heat of vaporization for the

vapor diffusing out as well as the sensible heat added to the liquid

droplet itself. The factor z/(e z - i) therefore represents a correc-

tion factor to the heat transfer coefficient h without mass transfer
from the droplet.

Several investigators have presented correlations for the heat trans-

fer coefficient h. However, as will appear later_ it was necessary for

these studies that a mass transfer coefficient also be available. The

correlations used in this paper were taken from Ranz and Marshall's work

(ref. i). It was felt that the nature of the investigation conducted in

their work was similar to the problems being studied in this paper,

although the maximum air temperatures used in their work were not so high
as the maximum air temperatures used in this investigation.

From their correlation the Nusselt number for heat transfer used is:

h(2ro)

NNu = km 2 + 0.6(Npr)i/3(NRe)I/2 (5)
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The factors in this equation were evaluated for the average film con-
ditions. This required knowledge of the air and droplet temperatures
as well as the partial pressures in the film (see appendixes A and B).
The Ranz and Marshall correlations were obtained from experiments con-
ducted at low temperatures and low vapor pressures. In their work,
therefore, the correction factor zI(e z - i) was unity and it is not
clear whether their correlation includes this factor as a variable.
Since the correlation was to be used under conditions where this factor
was not unity, and since the correlation is similar in form to those
obtained without mass transfer, it was decided to extrapolate the corre-
lation by assuming that it did not include the correction factor. The
correction factor therefore was computedand used in all of the calcu-
lations presented herein.

It can be seen from the above equations that a calculation of the
heat transfer through the film at any instant during the vaporization
process of the droplet would require the knowledge of the temperatures
on both sides of the air-vapor film surrounding the droplet_ of the
velocity of the droplet relative to the air, and of its radius, which
is dependent on the masstransferred up to that point and on the droplet
temperature.

MassTransfer

Neglecting thermal diffusion and assuming all diffusion to result
from the driving force of a concentration or partial pressure gradient
which exists in the direction of diffusion, the following equations are
obtained for counterdiffusion systems (ref. 4):

dpf x (rfpa raPf) (61
dr RT

and

Dv (71
xP T

In this case equimolal rates of diffusion must take place if the

total pressure is to be maintained, or:

rf ---ra (8)
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and

PT = Pa + Pf (9)

However, in most cases of a fuel droplet vaporizing in air essen-

tially unidirectional diffusion takes place. Equimolal diffusion would

be approached only if a droplet approached its critical temperature

during the heating-up period. In the cases under consideration in this

report essentially unidirectional diffusion exists; that is, there will

be diffusion of the fuel vapor away from the droplet while the rate of

diffusion of the air in the opposite direction, toward the droplet, is
zero. In this case,

ra=0

Combining equations (6), (7), and (i0) and rearranging:

(io)

and

Integrating between

Pa = PaJ3:

dpf RT

dr DvP T
rfPa (Ii)

r = ro and r = ro + Bo where Pa = PaL

PaB

log e
PaL

Dv PT

RTBo (paB - paL) - - (12 )PaB - PaL

PaB
log e

PaL

This is the equation for the rate of diffusion of the fuel vapor in terms

of the partial pressures of the air. Using equation (9) and assuming that

the partial pressure of the fuel vapor at the outer edge of the film PfB

is zero, an assumption discussed earlier in the analysis, the rate of dif-

fusion of the fuel vapor can be written in terms of partial pressures in
the film as follows:
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rf --

D v

RTB o
PfL

PT

PfL

PT

l°ge PT - PfL

(13)

where

rf --

Dv
(14)

RTB o

PT

PfL

PT

l°ge PT - PfL

Equation (14) states that the unidirectional diffusion of the fuel

vapor into the air equals the equimolal rate of diffusion_ which is a

function of the concentration, times the factor _ which is greater than

unity. This increase in rate represents a correction for the fact that

the net rate of movement of the air is zero, while the diffusion veloci-

ties of the fuel vapor and the air relative to each other must be

maintained.

Because of the difficulty in evaluating Bo and by analogy with

heat transfer a semiempirical_ semitheoretical relationship is set up

for mass transfer. Thus it is customarily considered on a semiempirical

basis that the mass of fuel vapor diffused out per unit time under the

conditions of interest here is given by

w = AokgPfL_ (15)

where kg is the mass transfer coefficient for the film in the case of

equimolal diffusion. Ranz and Marshall (ref. i) present a correlation

for kg, but again it was necessary to extrapolate their correlation to

conditions far removed from the experimental conditions under which it

was obtained. In making this extrapolation the line of reasoning was

as follows: The correlation was for the film. Therefore_ when the

density of the air and of the film were markedly different, the mean

density of the film Pm should be used instead of Pa" Another choice

to be made in the extrapolation was whether the Ranz and Marshall corre-

lation is for kg or for the product of kg and _, since the data for
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the Ranz and Marshall correlation were taken under conditions where
was essentially unity and therefore not a variable. The factor Pa is
sometimes used as a correction factor instead of _ (ref. 4). However,
when it is so used, it is a logarithmic meanaverage, while in all of
their calculations for their correlations Ranz and Marshall used an
arithmetic meanaverage. The difference between the two averages is
almost undetectable over the range of conditions covered in their experi-
ments and thus it is not clear whether their correlation included

via the factor Pa" It is also not clear whether the use of the arith-

metic mean rather than the logarithmic mean is an essential part of their

correlation. For extrapolation purposes for these computations, it was
decided to use Pa as an arithmetic average and to assume that _ was

not included in the correlation of Ranz and Marshall. Thus the final
equation used was

2roPakg

 Nu' = Dv m= + 0"6( sc)l/3( e)ll2 <161

The factors in the mass transfer equations were also computed for

the average film conditions (see appendix B). The values of the dif-

fusion coefficient Dv were arrived at by using the techniques recom-

mended by Hirschfelder, Curtiss, and Bird (ref. 5). It can be seen again

from the above equation that, to calculate the mass transfer at any

instant, a knowledge of the heat transfer and of the radius and velocity
of the droplet at that instant is essential.

Velocity Equation

The velocity of the droplet at any instant during the vaporization

process is essential to the calculation of both the heat and mass trans-

fer at that instant, since it enters into both correlations. The droplet

is assumed to be injected with a certain initial velocity relative to

the air. Aerodynamic drag forces will then either slow it down or speed
it up so that its velocity approaches that of the air. The less the

density of the air, that is, the lower its pressure and the higher its

temperature, the less effective the drag forces and the greater and more

rapid the penetration through the combustion chamber.

From aerodynamic theory the drag force exerted by a moving fluid

upon an immersed body may be calculated from the equation

U2

F : CDAc0m -_ (17)
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where CD is the coefficient of drag for the given body form and is a
function of the Reynolds number; Ac, the cross-sectional area of the
body; and Pm' the density of the fluid.

For a spherical droplet:

dU U2
F = -m -- = -CDAc_ mde 7

or

Pm U2
d___= _ _3 CD ____ (18)

de 8 PL ro

Here CD is taken as the drag coefficient for spheres (ref. 6) at

the Reynolds number for which the calculation is performed. It has been

pointed out by Hughes and Gilliland (ref. 7) that the drag coefficients

for solid spheres and for droplets are not equal. However, the condi-

tions for which the corrections are shown do not correspond to the con-

ditions for which the calculations were performed and therefore no

correction was made. Furthermore, extrapolation of the data of Hughes
and Gilliland would indicate that the correction should be close to

unity for the conditions considered here. It is again evident that, to

calculate the deceleration of the droplet at any instant, a knowledge
of both the heat and mass transfers is essential.

Method of Calculation

The dependency of the heat transfer, mass transfer, and velocity

equations upon each other and the complexity of the equations neces-

sitated a stepwise integration process where the values required are

evaluated for small increments of droplet temperature over a small

period of time during which all properties of the droplet and fluid may

be assumed to be constant. A sample calculation is shown in appendix A.

The procedure followed was first to assume an increment of time Z_ a

final velocity U2, and a final radius ro2 for a certain increment of

droplet temperature ZkTL_ the initial values of velocity UI, radius rol ,

and temperature TLI for that increment being already known from the

previous step_ or_ if this were the first increment, being specified.

For that increment the mean values of the droplet temperature TL_

radius ro_ and velocity U are calculated. Knowing the pressure and

temperature of the air, which are assumed to remain constant throughout

the process, the various properties in the film are calculated (see

appendix B).
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Then AU/LN9 is calculated from equation (Ig) and U2 is evaluated:

U2 = UI - I_ ) A8 (19)

This is repeated several times, correcting for CD each time; until

a value of U2 is found that satisfies the velocity equation and the

Reynolds number is fixed at the mean velocity of the increment U.

The next step would be to calculate the mass transfer coefficient kg

and the average mass transfer w in pounds per second for the increment

from equations (15) and (16). This requires a knowledge of the partial

pressure of the fuel. The total mass transfer for the increment is then

found from w A8 and the average droplet mass m would be

mI + m2 mI + (mI - w A6)"
m : = (2O)

2 2

In this equation m I would be specified or known from calculations of

the previous step.

The heat transfer to the droplet surface Qv is then calculated

from equations (3) and (4) and the remaining calculations take place as
follows:

%= Qv-W 

For all calculations shown here it was assumed that the thermal conduc-

tivity of the fuel was high and the droplet temperature was uniform. The

validity of these assumptions is discussed in appendix C. Therefore,

mCPL AT L
- (21)

QT,

r°2 t4_ ioL2J

(22)
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The values of U2, A6, and ro2 calculated from equations (19),

(21), and (22) are compared with those assumed at the beginning of the

computations and are usually recalculated at least once more. The final

values for this increment then become the initial values of the next

increment and the computations are continued for small increments of

2_TL until QL is found to approach zero. At this point the temperature

asymptote is about to be reached. Here the computations were stopped,

since only the unsteady state was being studied. Since the asymptotic

temperature was not known for most conditions prior to each calcula-

tion, _T L and the number of steps were difficult to determine. It was

found that between 12 and 16 steps usually gave sufficient accuracy.

A model i, IBM Card-Programmed Electronic Calculator was used for

the computations. The special program to solve this problem uses the

floating-decimal general-purpose connections of the calculator. One

complete calculation for specified droplet conditions of initial radius,

temperature, and velocity and air conditions of pressure and temperature

takes approximately 2.0 hours on the CPC not counting the setup time,

computation of the properties at the successive droplet temperature incre-

ments, and card prepunching.

A typical vaporization history calculated by this method is shown

in figure 2 for a droplet of n-octane of 50-micron initial radius,

50o F initial temperature, and IOO-fps initial velocity with respect to

air, vaporizing under air ambient conditions of 0.5-atmosphere pressure

and 1,000 ° F temperature.

Steady State

The droplet temperature approaches the wet-bulb temperature asymp-

totically during the vaporization process. At the wet-bulb or asymptotic

temperature

% = (23)

Substituting values from equation (3) and changing TL to Tas there

is obtained:

z)
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Substituting wCpf/[_& o for z and rearranging:

:¢B (e - l) (25)
Cpf

This is a simple equation for the asymptotic or wet-bulb temperature

as a function of the air temperature and the mass and heat transfers. A

knowledge of the latter two values is essential for a solution of this

equation. It can, however, be rewritten using only the properties of

the liquid and film as follows: Combining equations (24) and (15) and

rearranging give:

TB - T = pfL _as

kg

z h

e z - i

Combining the above equation with equations (5) and (16) and rearranging:

: _ (Dv mPf____L 
Tas TB \ Pakm

NN___U'_

ez _z i NNu /

(26)

Solution of equation (26) must necessarily be by trial and error,

since the component properties are all functions of both Tas and TB

as well as of the air pressure and the fuel used. The factor z/(e z - i)

must be approximated since this factor is affected by the volatility of

the fuel. It can be stated that for very low volatility fuels this factor

can usually be taken as m_ity with little error. For high-volatility

fuels at low air temperatures and high air pressures z/(e z - i) can

still be taken as unity with little error. For example, using n-pentane_
this factor has a value of 0.957 at i00 ° F air temperature and 5-atmosphere

air pressure while n-octane, a less volatile fuel, Ims a value of 0.995

for this factor at the same conditions. Howew_r, for high-volatility

fuels at high air temperatures and low air presstmes lower values have to

be used. n-Pentane has a value of about 0.63 at 500 ° F and i atmosphere
air conditions.

The m_ss transfer during the steady-state period of vaporization can

be determined by combining equations (15) and (16) as follows:

W

2Dv0mPfL_ r o @
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Since the temperatures across the finn have become essentially constantj

the above equation can be rewritten as:

where K I and K 2 are constants.

Equation (27) shows that for a particular fuel the rate of 1_ss

transfer during the steady state is a function of only the radius and

velocity of the droplet at any instant, provided the air temperature

and pressure remain unchanged.

Equation (26) for the steady state where the temperatures across

the fiKm are fixed, and therefore all the properties in it_ can be

rewritten as

2 + K4(roU) I/2

Tas = TB - K3

2 + Ks(roU)i/2

(2S)

where K3, K4_ and K 5 are constants for any particular fuel and air

conditions at the asymptotic or wet-bulb temperature Tas. Therefore,

Tas depends upon the ratio of the Nusselt numbers for mass and heat

transfer. It can be deduced_ after examining the above equation, tl_t

the wet-bulb temperature is dependent on the droplet radius and velocity.

At high droplet speeds or for relatively large droplet radii the fac-

tor 2 in both the Nusselt numbers becomes relatively negligible _nd the

ratio of the Nusselt numbers and consequently the wet-bulb temperature

become essentially constant. However, at lower values of droplet speed

or droplet radius the wet-bulb temperature rises slightly until either

the speeds or radii approach zero_ where tile Nusselt number ratio

approaches unity and the wet-bulb temperature is again f_xed.

This dependence proved to be small for most conditions of interest

in this paper. Figure 3(a) shows ZkTas as calculated for various veloci-

ties_ where ATas is defined as the deviation of the actual wet-bulb tem-

perature from that calculated at large Reynolds numbers; figure 3(b)

shows ZkTas for various radii for n-pentane at 1-atmosphere air pressure

and i00 ° F air temperature. It should be noted that no attempt was made

to include a dependence of the vapor pressure of fuels on droplet size

as the droplet radius became very small in calculating th_ information

shown in figure 3(b). It is to be expected that the rise of w_por pres-

sure as corrected for very small droplet radii would lower the w_l_es of

the wet-bulb temperature again at small drop radii.
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Further examination of equation (26) reveals that the wet-bulb tem-
perature approaches the air temperature in case of ]ow-volatility fuels.
This is to be expected, since the mass transfer has to be high enough to
carry away the entire heat transferred to the droplet. In the case of
no masstransfer, the wet-bulb temperature equals the air temperature.

APPARATUS

After investigating theoretically the importance of the unsteady
state during the vaporization period and conducting a number of calcu-
lations in the unsteady state, it was felt that experimental verifica-
tion of its importance was desirable. Accordingly, experimental appara-
tus has been set up in an attempt to establish the importance of the
unsteady state and a few experimental records have been obtained.

Figure 4 shows a schematic diagram of the apparatus constructed to
determine the temperature-time histories of vaporizing droplets. Air
is tapped from the house line at i00 ib/sq in. abs and passed through
a porous-stone filter to remove water, oil, and other impurities. Its
pressure is then controlled by a pressure regulator, after which it

2_ -inch pipe where its pressure and temperature arepasses through a 2

measuredby a precision Bourdon gage and a thermometer. The diameter of
the pipe at this measuring section is madelarge enough so that the dif-
ference between total and static temperatures is negligible at the highest
rate of flow to be used. The air is then passed through either the
3/32- or the 3/16-inch-diameter critical-flow orifice. The air is then
heated with an electrical resistance heater, after which it passes through
a calming section to a 14-inch-long section of 2-inch flexible tubing
which terminates in a 1-inch I.S.A. standard flow nozzle. The exit sec-
tion of the nozzle is covered with a 160-meshscreen. The screen assists
in equalizing the velocity over the nozzle opening to a value calculated
from the average volumetric velocity.

The liquid droplet is hung on the junction of the thermocouple
about 1/2 inch above the exit section of the nozzle. A O.OlO-inch iron-
constantan thermocouple was used for the preliminary investigations
reported herein. A clean and small thermocouple junction was found essen-
tial for a minimumof droplet distortion. It was found that droplets of
700- to 900-micron radius were the best size to be used with the above
thermocouple wire size without distortion during the major portion of the
heating-up and vaporization period.

An illuminating system was provided for viewing the droplet. A
300-watt General Electric T_ projection lamp was used. A heat-absorbing2
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glass was placed in the path of the light to minimize the heating of
the droplet by radiation from the lamp. An optical system having a maxi-
mummagnification of 86 was provided for measuring the diameter of the
droplet. The optical system was calibrated by placing a wire of known
diameter in place of the droplet.

The experimental procedure was as follows: The air was heated to
the desired temperature with the exit nozzle swungaway from the
thermocouple.

The exit velocity of the air stream was adjusted by varying the
inlet air pressure ahead of the critical flow orifice. Low air veloci-
ties were used to avoid blowing the droplet off the thermocouple junction.

The droplet was then formed and suspendedon the thermocouple using
a syringe and hypodermic needle. The initial droplet radius was then
measuredby the optical magnification system. The air nozzle at the
end of the flexible tubing section was then suddenly swungunder the
droplet. The output of the thermocouple was measuredand recorded by
a 1-second full-scale model GLeeds & Northrup electronic self-balancing
Speedomaxpotentiometer. The temperature of the droplet was measuredby
the calibrated thermocouple output, while the time scale was computed
from the known speed of the recorder chart.

RESULTSANDDISCUSSION

The typical calculated vaporization-time histories shown in fig-
ures 2 and 5 tb_rough8 contain the following information:

(i) Droplet temperature, TL, oF
(2) Droplet mass, percent of original, M, percent
(3) Radius, r o, inches
(4) Velocity relative to the air, U, fps
(5) Penetration or distance traveled relative to the air, d_ inches
(6) Instantaneous rate of mass transfer, w, pounds per second
(7) Instantaneous total heat transfer from the air to the film, Q,

Btu/sec
(8) Instantaneous heat of vaporization, Q_, Btu/sec
(9) Instantaneous heat transfer to the liquid droplet, QL' Btu/sec

The fuel_ initial droplet radius, initial droplet temperature, initial
droplet speed relative to the air_ air pressure, and air temperature are
indicated in the title of each figure. The portion of the total heat trans-
fer Q that is carried back with the diffusing vapor in the form of
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superheat can be determined from the curves by taking the difference
between Q and the sumof QL and Q_.

Figures 2 and 5 through 8 represent the results of only 7 out of
the 252 cases for which calculations were performed. A complete set of
graphs presenting the results of all the calculations is contained in
the manuscript copy of this report. This copy is available for loan or
reference in the Division of Research Information, National Advisory
Committee for Aeronautics, Washington, D. C.

Examination of these typical graphs (figs. 2 and 5 to 8) yields the
following conclusions:

For low-volatility fuels, for example, figure 2 for n-octane,
speaking of the heat transferred to the surface of tne liquid droplet,
the amount of heat going to sensible heat far exceeds the amount of heat
going to supply the latent heat of vaporization during most of the unsteady-
state or heating-up period and especially right after injection. The
higher the air temperature or the higher the air pressure_ the greater the
portion going to sensible heat. Only as the droplet approaches the steady
state does the relation reverse itself, as required by the fact that QL
becomesnegligible and essentially equal to zero during the steady state.
This effect is, of course, largely dependent on the initial injection
temperature of the liquid fuel. At high initial liquid temperatures sen-
sible heat can be lost by the droplet or a net heat transfer Q from the
liquid to the air may even occur (e.g., fig. 5 for n-octane at 200° F
initial liquid temperature and i00 ° F air temperature).

For high-volatility fuels, however (e.g., fig. 6(a) for n-pentane
at 1-atmosphere air pressure and 500° F air temperature), the latent
heat of vaporization exceeds the amount going to sensible heat. In some
cases, especially at low air pressures (e.g., fig. 6(b) for n-pentane),
the liquid undergoes a cooling down or loses sensible heat at 0.5-atmosphere
air pressure regardless of the air temperature. I_ this case the net heat
transfer from the air goes entirely into latent heat of vaporization. The
balance of the heat required to supply the latent heat of vaporization is
drawn from the droplet itself. Only at high air temperatures and high air
pressures does the sensible-heat requirement of the droplet exceed that of
the heat of vaporization, and only for a shorter portion of the unsteadystate.

The rate of mass transfer usually increases with time as the droplet
is heating up. The increase is muchmore pronounced at higher air tem-
peratures and lower air pressures (e.g., fig. 2 for n-octane at
0.5-atmosphere air pressure and 1,000° F air temperature). At high air
pressures and low air temperatures (e.g., figs. 7 and 8(a) for benzene
and n-octane at 5-atmosphere air pressure and i00 ° F air temperature)
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the rate of masstransfer undergoes a decrease_ although the droplet is
heating up. The reason for this is that in this case the denser air
slows downthe droplet very rapidly with a consequent rapid drop in the
Reynolds numberwhich offsets the favorable effect of the exponential
increase in the vapor pressure of the liquid fuel with temperature on
the rate of masstransfer w. At intermediate cases, a rise in w
followed by a drop can be noticed (e.g., fig. 8(b) for n-octane at
1-atmosphere air pressure and i00 ° F air temperature). In the case of
droplets cooling downduring the unsteady state_ the rate of masstrans-
fer consistently decreases with time. In the steady state the rate of
masstransfer becomesa function of only the radius and velocity of the
droplet and thus undergoes a small but steady decrease in value (see
eq. (27)).

For comparison purposes the three-dimensional graphs shown in

figs. 9 through 12 are presented. These are temperature-time history

curves for the three fuels at different fuel and ambient air conditions.

In all these curves the initial temperature of the droplets was 50o F

and the initial velocity relative to the air was i00 fps.

Figure 9(a) shows temperature-time histories of n-octane at an air

temperature of 500 ° F_ for various droplet sizes and air pressures. It

can be seen that for the same air pressures but different radius droplets

the asymptotic temperatures are equal and the three curves representing

the three sizes at any one air pressure form a horizontal plane after all

three droplets have reached their steady states. The ends of the hori-

zontal planes shown by the broken lines have no particular meaning and

were drawn for illustrative purposes only, since the lO-micron droplets

would vaporize before reaching this point and the lO0-micron droplets

would last longer. Figure 9(b) shows similar temperature-time histories

for n-octane except that the air pressure was kept constant at i atmos-

phere and the air temperature varied. Figure 9(c) shows temperature-

time histories for n-octane where all the droplets had a 50-micron

initial radius and both the air temperature and pressure were varied.

In this case none of the nine temperature-time histories shown would

have the same asymptotic temperature. The end lines joining the curves

at the same air temperature represent, therefore, a variation of asymp-

totic temperatures with air pressures at three different air temperatures.

Figures lO(a) to lO(c) and ll(a) to ll(c) show the same histories

described in figures 9(a) to 9(c) but for benzene and n-pentane,

respectively.

Figure 12(a) shows temperature-time histories of the three fuels

where the initial droplet radius was 50 microns, the air pressure was

i atmosphere, and the air temperature was varied. Figure 12(b) shows

the three fuel droplets having the same initial radius, with the air
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temperature kept constant at 500° F and the air pressure varied. It
can be s_en from these curves that the lower volatility fuels have
higher asymptotic temperatures arld take a longer time to reach them for
the ssmleoperating and sm._bientconditions. By plotting the results of
the present calcul_±tions, it was found that, with all other conditions
constant_ the time for droplets to reach the wet-bulb temperature varied
approximately as the initial radius to the 1.8 power.

In the coI_ustion chambersthe massof the fuel droplets vaporized
and the penetrations of these droplets relative to the air are essential
in decidir_ the zone where combustion is likely to take place. Fig-
ures 13(a) throT_h 13(i) showtime histories of droplet penetration d,
relative to the air, and rr_ss, percent of origii_l, M during the
unsteady state for n-octane at nine different ambient air conditions.
Each of these figures contains the previous information for the three
initial droplet sizes and two initial droplet velocities. As the tem-
perature decreases but with the sameair pressure, the droplets take
a longer time and penetrate farther before reaching their steady states;
as the air pressure increases but for the sameair temperature, the
droplets take a longer time but penetrate less before reaching their
steady states.

Figure 14 presents a comparison of benzene and n-octane wet-bulb
temperatures calculated in this report with wet-bulb temperatures
experimentally obtained by Ingebo (ref. 2). Referring to the benzene
curves, it can be seen that the calculated wet-bulb temperatures are
always somewhathigher than the experimental wet-bulb temperatures.
This would indicate that the computedmasstransfer was too low or the
computedheat transfer was too high or both. Referring to the n-octane
curves, it can be seen that there is a cross-over of the two curves.
Extrapolation of the data of Ingebo would indicate that the droplet
would boil_ in contradiction to the diffusion theory. Whether this is
a deficiency in the theory or in the experimental data of Ingebo is not
clear.

A typical temperature-time history obtained in the experimental
investigations is shownin figure 15 for a droplet of n-octane of approxi-
mately 750-micron initial radius when exposed to air moving at a constant
velocity of about 16 fps. The portion 1-2 of this graph shows the output
of the thermocouple when initially in roomair. At point 2 the droplet
was hung on the thermocouple. Portion 2-3-4 of the graph represents the
rapid response of the thermocouple to the cooler-than-room-air droplet
followed by a gradual cooling to the wet-bulb temperature corresponding
to room air at point 4. This period is of particular interest in that
it gives an indication of the speed of response of the thermocouple and
recording instrument.

At point 4 a stream of hot air was suddenly sw_mgunder the droplet.
The unsteady-state or heating-up portion of the curw_ can be seen from
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point 4 to a point chosen arbitrarily at 5 where the droplet would be
judged to have closely reached the wet-bulb temperature corresponding to
the temperature of the air stream. The portion 5-6 of the graph is con-
sidered to be the steady-state vaporization period. The last part of
this portion, near 6, is of questionable reliability, since observation
showedthat as the droplet nears complete vaporization it deviates from
the spherical shape assumedin the calculations and, instead, takes a
distorted shape depending on the exact shape of the thermocouple junc-
tion. It should also be noted that the purity of the fuels was only
about 98 percent and that this portion of the curve may represent the
vaporization of the high-boiling-point impurities in the mixture.

At point 6 a thin film of the liquid fuel still remains on the
thermocouple element. This soon disappears and the thermocouple tem-
perature rises to the air temperature as represented by point 7. At
that point the thermocouple is completely dry and the temperature
recorded at 7 is the air temperature during the entire plot. Since
this takes only a short time, the air temperature is not likely to have
varied during this period. This procedure has the advantage of using
a single thermocouple to measureboth the droplet and air temperatures.

Since the amount of liquid fuel remaining as a thin film on the
thermocouple element at point 6 in the graph is minute comparedwith
the total liquid contained in the initial droplet, the relative magni-
tudes of time of portions 4-5 and 5-6 of the graph can be assumedto
represent the relative importance of the unsteady and steady states,
respectively.

Figure 16 shows several time histories of droplets of n-octane all
of approximately equal size as subjected to air of varying temperature.
The portions of the curve corresponding to 2-3-4 in figure 15 have been
omitted here. It can be seen from these curves that the unsteady-state
portion of the vaporization time assumesgreater importance and becomes
dominant at higher air temperatures.

Figure 17 showstime histories of liquids of varying volatility
vaporizing under the sameconditions of pressure, temperature, and
velocity.

Since in the calculated curves presented in this report the velocity
of the droplet was madeto decrease relative to the air because of aero-
dynamic drag forces, while the experimental curves were measuredat
essentially constant air velocity past the droplets_ caution must be
exercised in comparing the experimental results thus obtained with the
calculated curves. Figure 18 shows two calculated temperature, velocity,
and rate of mass transfer (unsteady-state) histories of two droplets of
n-octane of 50-micron initial radius and lO0-fps initial velocity each.
Onewas madeto slow down, while the other remained at lO0-fps velocity
throughout the calculated period. Other conditions were kept equal.
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It can be seen that the constant-velocity droplet spends less time in
the unsteady-state period but has a higher rate of mass transfer during
that period with consequently shorter total vaporization time. The net
result would be that the unsteady state is relatively longer for the
droplet that is moving at a constant speed.

The following deductions can now be made.

(i) For the same fuel the unsteady state becomes relatively larger

in magnitude with respect to the total vaporization time the higher the
air temperature.

(2) For the same air temperatures the unsteady state is relatively

larger in magnitude with respect to the total vaporization time the higher
the volatility of the fuel.

(5) High-volatility fuels have lower wet-bulb temperatures for the
same air conditions.

(4) At relatively low air temperatures extremely low volatility

fuels have wet-bulb temperatures close to the air temperatures and spend

only a very small portion of their vaporization time in the unsteady
state. At high air temperatures, however, the difference between the
air and wet-bulb temperatures increases.

(5) For any one fuel the wet-bulb temperature is higher the higher
the air pressure or temperature.

The penetration - mass-vaporized relationships of different size

droplets are of particular interest in jet-engine combustion-chamber

design. When the fuel is injected continuously into a stream of moving

air, it leaves the injector nozzle first as a ligament or sheet after

which this ligament or sheet breaks down to different size droplets

originally moving at the same speed. If the velocity of these droplets

is higher than the air velocity, these droplets start slowing down rela-

tive to the air, with the smaller droplets slowing down faster, and

penetrate a lesser distance while losing their mass faster and earlier

along their travel path. The mass of vapor given away by each droplet

is carried along with the air through the combustion chamber. To this

vapor is continuously added the vapor given away by the larger droplets

that have been formed later in time but that reached that point because

of their more rapid and greater penetration. The total amount of fuel

vapor present at a certain cross section of the combustion chamber there-

fore consists of the total vapor given away by all the drops before

reaching that cross section. In order to have a short combustion cham-

ber, a combustible air-vapor mixture should be formed a short distance

after injection. This would necessitate that the largest number of the
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drop sizes fall in the smaller radius range so that the weight distri-
bution of different droplet sizes in the spray would not be weighted too
highly in favor of the droplets of large radius range, since these large
droplets have a muchgreater penetration before they contribute much
vapor toward forming a combustible mixture.

To illustrate the possible use of the curves of droplet massversus
time for combustion-chamber design purposes, and to empl_size the impor-
tance of the unsteady portion of the time history of the droplets, the
following examplewas worked out with certain arbitrary but reasonable
assumptions madeas to the combustion-chamber operating conditions.
These assumptions were:

(I) No effect of one evaporating droplet upon the other. This is
in obvious contradiction to the facts_ but since this effect is unknown
it was necessary to neglect it.

(2) A constant air velocity of 50 fps.

(3) An air pressure of i atmosphere and a temperature of 500° F.
The 500° F air temperature is admittedly high with respect to the air
temperature coming from the compressor, but calculations were available
for this temperature and recirculation, which was neglected, would
undoubtedly increase the air temperature.

(4) The fuel used was n-octane.

(5) A drop-size weight distribution of 25 percent for the lO-micron
group, 65 percent for the 50-micron group_ and i0 percent for the
lO0-micron group.

(6) An initial fuel velocity relative to the air of i00 fps.

The previously performed calculations were extended through the
steady state until the droplets nearly disappeared.- Such a calculation
showing temperature, mass, and penetration relative to the air versus
time for the 50-micron droplet is shownin figure 19. The massesvapor-
ized from each size droplet were then calculated and plotted versus dis-
tance traveled by each droplet relative to the combustion chamberusing
the assumedairspeed of 50 fps, as shownin figure 20.

Using the arbitrarily chosen droplet size distribution, the percent-
age of the total fuel vaporized from each droplet size group up to any
distance after droplet formation was then plotted in figure 21. The
total vapor present, which is the sumof the three curves, is also shown
in figure 21. Assuminga fuel-air mixture strength in the primary com-
bustion zone to be in the neighborhood of 0.05_ and a possible inflamma-
bility ratio of 0.03 of the vapor-air ratio_ a total vaporization in the
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neighborhood of 35 percent would be adequate for initiating combustion
under these assumptions. According to the calculations presented in
figure 21, this would take place 8 inches after the droplets have been
formed.

It is to be noted that these calculations are approximate at best.
Turbulence, backflow, and heat transfer by radiation have not been taken
into account. However, they serve to showthe possible use of the cal-
culated curves for estimation purposes. A knowledge of droplet size
distribution seemsalso to be fundamental in any such vaporization
calculations.

An important observation shownby the above calculations is that
the 50- and lO0-micron droplets reach the combustion zone while still
in the heating-up or unsteady-state portion of vaporization, a fact
that further emphasizes the importance of the unsteady state in any
combustion studies. It is the opinion of the authors that the unsteady
state is of primary importance in forming a combustible mixture and that
experimental studies which could be used either to verify or to correct
the extrapolation of the heat and masstransfer correlations used should
be conducted. Until these extrapolations are confirmed, the absolute
accuracy of the curves can be questioned, although it is not believed
that any of the conclusions reached would be altered. After these rela-
tionships have been confirmed or corrected, it would then seemnecessary
to determine the effect of one droplet upon another. This information
together with drop size distribution should then permit a rational and
reasonable determination of the time required to form a combustible mix-
ture in a heterogeneous mixture of fuel droplets and air.

University of Wisconsin,
Madison, Wisc., March 12_ 1953.
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APPENDIXA

SAMPLEOFCALCULATIONS

The unsteady-state portion of the vaporization time of a droplet of
benzene was calculated for the following data:

Droplet initial radius rol = 50 microns = 1.9685 X 10-3 in.
Droplet initial temperature TLI = 50o F = 510° R
Droplet initial velocity relative to the air UI = 400 fps =

4,800 in./sec
Air pressure PT = I atm = 14.696 ib/sq in. abs
Air temperature TB = 1,000° F = _,460° R

A stepwise methodwas used in integrating the equations as follows:
The temperature of the droplet was assumedto undergo a small increase 21TL
over a small period of time 2_, during which the properties of the liquid
fuel, fuel vapor, and air could be considered to be constant. The heat
and masstransfer during this period were then calculated together with
the velocity change, from which the time required for the temperature
increase together with the radius and velocity at the end of the increment
were calculated. However, these three values had to be assumedprior to
the calculation and comparedwith the calculated values.

For a droplet-temperature increase of 5° F it was assumedthat:

= 2.7 x 10-5 sec

U2 = 4,725 in./sec

ro2 = 1.970 X 10-3 in.

For this increment:

510 + 515
= 512.5 ° RTL = average temperature of droplet =

2
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The various properties in the film and for
calculated and read as follows:

PfL = 0.970 ib/sq in. abs

NACATN 3179

the droplet were then

qu = 2.678 × 10-5 ib/cu in.

_m= 1.475 X 10 -6 ib/(in.)(sec)

km = 5.591 x i0-7 Btu/(in.)(sec)(OF)

Cpm = 0.2609 Btu/(ib)(°F)

Dv = 3.60 X 10 -2 sq in./sec

h : 189.0 Btu/lb

Cpf = 0.422 Btu/(ib)(°F)

0LI = 3.154 X 10 -2 ib/eu in.

PL2 = 3.150 X 10 -2 ib/cu in.

CpL = 0.4080 Btu/(ib) (OF)

ro = Average radius of the droplet for the increment

rol + ro2
m

2

= ('1"9685 + 1"970) ×I°-32

= 1.9693 × 10 -3 in.
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U = Average velocity of the droplet

U1 9-U2

2

4,800 + 4,725

= 4,762.5 in./sec

NRe = Reynolds number

2roUP m

_m

= 340.568

CD (at NRe ) = 0.6633

and

Applying equation (18):

AU= __CD
Ae 8

Pm u2

PLI ro
= 2.4326 in./sec 2

U = 65.681 in./sec

Therefore

U2 = 4,800 - 65.681 = 4,734.319 in./sec

as compared with the assumed value of 4,725 in./sec. This process was

then repeated, selecting the correct coefficient of drag each time until

a value for U2 was arrived at that satisfied the velocity equation.
Therefore

U2 = 4,750.79 in./sec
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and

NRe= 340.775

Therefore

kg --

_m

NSc = _ = 1.5299
PmDv

OvUm _ 0-6(_So)I/3(NRe)I/__aro i +

= 2.5427 X 10 -4 sec -I

PT

= = 1.030
PfL

PT

l°ge PT - PfL

Therefore

w = kg_PfL4_ro2 = 1.2381 x 10 -8 ib/sec

Therefore

km 2

Cpm_m
Npr .... 0.6883

+ o.6 (_pr) II3(NRe)I/_

: 1.6721 × lO -3 Btu/(sec)(sq in.)(°F)

Q = hAo(TB - TL) = 7.7213 × 10-5 Btulsec

z

= 0.9683
ez - i
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Therefore

Qv = Q
e z - i

= 7.4764 X 10 -5 Btu/sec

Qs = Q - Qv = 2.4488 × lO -6 Btu/sec

and

QX = wX = 2.34006 × 10 -6 Btu/sec

QL = Qv - Qk : 7.2424 x 10-5 Btu/sec

m I = Mass of droplet at beginning of increment

= 4/3_ro13PL (at 510 ° R)

= 1.00936 X 10 -9 ib

m2 = Mass of droplet at end of increment

= mI - w2_

= 1.00901 x 10 -9 ib

Therefore

m
ml + m2 = 1.009186 x 10 -9 ib

2

mCpL AT L

QL

= 2.8426 X 10 -5 sec

(as compared with the estimated value of 2.7 x 10 -5 second).
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( 3m2 / z/3
ro2 = \4_PL2 / - 1.97017 x i0 -_ in.

(as compared with the estimated value of 1.970 X i0 -5 inch).

The calculations for this first increment were then repeated taking

the calculated values of time, velocity_ and radius as new assumptions

to obtain more accurate results. The final values of U2, to2 , and m2,

calculated for the first increment, then became the original values of

the next increment and the same stepwise method was used for the second

increment. The calculations were stopped when QL approached zero,

indicating that the asymptotic or wet-bulb temperature has been approached.
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APPENDIXB

CALCULATIONSOF PROPERTIESIN FILM

The computations described in the analysis require the use of the
thermal conductivity, viscosity, density_ and specific heat of the air-
vapor mixture in the film surrounding the droplet. The concentrations
of fuel vapor and air are not constant across the film, with the mixture
being the richest in the vicinity of the droplet and leaner away from
it. To a good approximation the molal ratio of fuel vapor to air equals
the ratio of the partial pressure due to the fuel vapor to the partial
pressure due to the air in the film. Thus the largest fuel-vapor - air
ratio occurs at the surface of the droplet and is essentially equal to
the ratio of the vapor pressure at the droplet temperature to the partial
pressure due to the air, or pfL/PaL. This ratio becomeszero at the
outer edge of the film, provided there is no interaction between droplets.

It has been shownfor plane surfaces (ref. 8) that in the case of a
fully permeable fiLm_ where masstransfer takes place in both directions
and equimolal diffusion exists, the partial pressure gradients would be
linear throughout the film. The temperature in the film which in most
of the cases varies from a maximumof TB, the air temperature at the
outer edge of the film, to TL, the droplet temperature at the inner
edge, would follow a linear gradient only in the case of no mass trans-
fer. In the case under consideration_ that is_ a semipermeable film
with masstransfer in one direction only_ where part of the incoming
heat is picked up by the diffusing vapor, the linearity of both the
partial pressure and temperature gradients in the film ceases to exist.

An exact evaluation of the properties in the film surrounding a
spherical droplet would render the equations almost impossible to inte-
grate, and furthermore the precision with which someof the properties
are knownprobably does not justify the work required. Thus an averaging
technique in the film was employed. The properties then have been cal-
cula%ed at the logarithmic average temperature in the film Tm and for
a fuel-vapor - air mixture of constant concentration equal to one-half
the concentration at the droplet surface. The following equations were
used:

Tm _

TB - TL

l°ge _

(29)
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ka + -- kf
2p 2pT

(3o)

(31)

P_

12R_m

PT

12RT m
(32)

Cpm = gaCpa + gfCpf

PfL

2P-y

Mm Cpa + Mm
Cpf (33)

In these relations the pure properties of the fuel vapor and air

have been taken at the logarithmic mean temperature in the film.

Figure 22 shows the properties in the film versus droplet tempera-
ture as calculated for n-octane and air.
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APPENDIXC

JUSTIFICATIONFORASSUMPTIONOFHIGHFUELCONDUCTIVITY

ANDUNIFORMDROPLETT_ERATURE

As can be deduced from equation (21), the calculations performed
in this project assumeda large thermal conductivity through the liquid
droplet and a resulting uniform temperature throughout the droplet at
all times. An estimation of the validity of the above assumptions can
be madefrom the charts prepared by Gurney and Lurie (ref. 9; discussion
given in ref. i0) for determining the relationship between temperature
and time at various points in spheres and other shapes. To adapt this
method to the cases of interest here, the resistance ratio kLIhLr o was
used, where kL is the thermal conductivity of the liquid fuel evaluated
at the temperature of the droplet; hL, a coefficient of heat transfer to
the liquid droplet based on the portion of heat transferred to the droplet
that appears as sensible heat (QL); and ro, the radius of the droplet.
The use of this parameter together with the charts permits an estimation
of the possible difference between the temperature at the surface of the
droplet and the temperature at its center, respectively. The Gurney-
Lurie charts specify that the temperatures at the midpoint and at the
surface would differ considerably whenthe resistance ratio is small and
only slightly when it is large. Referring specifically to the Gurney-
Lurie charts for spheres, if the resistance ratio is 6 or more, the tem-
perature difference is negligibly small; while, if the resistance ratio
is I or 2, the temperature difference is appreciable and should be taken
into account. However, the Gurney-Lurie charts were based on the assump-
tions of constancy in the temperature surrounding the surface of the body,
the resistance ratio, and the thermal diffusivity in the body under con-
sideration; and it should be realized that, under the conditions of an
evaporating droplet, the charts should be used for estimation purposes
only.

Values for the resistance ratio are plotted in figure 23 for n-octane,
benzene, and n-pentane versus heating-up time together with the droplet
temperatures calculated by the methods previously described in this report
for an air pressure of i atmosphere and an air temperature of 500° F.
Figures 24(a) and 24(b) show the resistance ratio plotted for benzene at
a constant air pressure of i atmosphere and a constant air temperature
of 500° F, respectively.

The data of figures 23 and 24 indicate that the assumption of high
thermal conductivity in the liquid droplet is unquestionably good for
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high-volatility fuels_ is of reasonable validity for medium-volatility
fuels_ and should be further investigated for the low-volatility fuels.
If internal circulation (ref. 7) exists in t_ _droplets under the con-
ditions of interest here_ it could effectively increase the conductivity
of the liquid.
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TABLEI

REFF2ENCESFROMWHICHPROPERTIESWEREOBTAINED

FORFUELSANDFORAIR

Property

%

_f

h

PfL

Cpf

cpL

kL

n-Octane

ii and 12

ii

ii

Ii

ii

14

13 and 14

15

Reference

Benzene n-Pentane Air

ii

12

12

12

ii

14

13

_5

15

ii and 12

ii

ii

Ii

14

13 and 14

15

I

I

ii
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_o

_,_ Liquid droplet

_ Air-vapor film

Air

Figure i.- Heat transfer to droplet.
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Figure 24.- Resistance ratio and droplet temperature for benzene.

U I : i00 fps; rol = 50 microns.
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Figure 24.- Concluded.
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